
[Incremental Learning] Rehearsal-based 방법론을 훑어보자(ER-MIR, OCS)
·
Computer Vision💖/Continual Learning
0. Overview Replay-based 방법은 과거의 샘플들을 replay buffer나 generative model에 저장해놓고, current task 학습에 사용하는 방법이다. 이러한 과거 샘플들을 이용해 retraining을 하기도 하고, 현재 학습의 constraints로 사용하기도 한다. 목표는 여전히 classifier $f$의 파라미터 $\theta$를 학습하는 것이다. Online learning에서는 task가 주어지지 않고, input data의 iid도 보장되지 않는다. (=single-pass through the data) 아래 방법론들은 랜덤이 아니라 샘플링을 "잘"해야한다고 주장하지만, 그 샘플링의 단위는 각각 다르니 유의해야할 것 같다. 1. ER-MIR Online..